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Abstract
Current supercomputers introduce SSDs to form a Burst
Buffer (BB) layer to meet the HPC application’s growing
I/O requirements. BBs can be divided into two types by de-
ployment location. One is the local BB, which is known for
its scalability and performance. The other is the shared BB,
which has the advantage of data sharing and deployment costs.
How to unify the advantages of the local BB and the shared
BB is a key issue in the HPC community.

We propose a novel BB file system named HadaFS that pro-
vides the advantages of local BB deployments to shared BB
deployments. First, HadaFS offers a new Localized Triage Ar-
chitecture (LTA) to solve the problem of ultra-scale expansion
and data sharing. Then, HadaFS proposes a full-path indexing
approach with three metadata synchronization strategies to
solve the problem of complex metadata management of tra-
ditional file systems and mismatch with the application I/O
behaviors. Moreover, HadaFS integrates a data management
tool named Hadash, which supports efficient data query in the
BB and accelerates data migration between the BB and tradi-
tional HPC storage. HadaFS has been deployed on the Sun-
way New-generation Supercomputer (SNS), serving hundreds
of applications and supporting a maximum of 600,000-client
scaling.

1 Introduction

High Performance Computing (HPC) is experiencing an era of
explosive growth in computing scale and data. In order to meet
the growing I/O demands of HPC applications, researchers
propose Burst Buffer (BB) [35] to build a data acceleration
layer through new storage media such as SSDs to serve appli-
cations’ I/O quickly. Since 2016, more and more supercom-
puters have introduced Burst Buffer, such as Frontier [44],
Fugaku [18], LUMI [15], Summit [43], Tianhe-2 [63], etc.
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Depending on the deployment location of SSDs, BBs can be
classified into two types [10]: 1) local BB, which means SSDs
are deployed on each computing node as local disks;2) shared
BB, which means SSDs are deployed on dedicated nodes that
can be accessed by computing nodes, such as I/O forwarding
nodes [5] to support shared data access.

Since each BB node in the local BB is dedicated to serving
one computing node, the local BB can achieve good scalabil-
ity, and its performance can grow linearly with the number
of computing nodes. However, it still has some limitations:
1) The local BB is not suitable for scenarios such as N-1 I/O
mode (all processes share one file) and workflow due to the
difficulty of data sharing. 2) The local BB architecture re-
sults in significant resource waste due to the large variance
in I/O load between HPC applications and the relatively low
percentage of data-intensive applications [67]. 3) The deploy-
ment cost of the local BB will rise sharply in the future as
supercomputers scale up rapidly.

In contrast, the shared BB has the advantage of data shar-
ing and deployment costs compared to the local BB. But
it is challenging to support ultra-scale supercomputers with
hundreds of thousands of clients [71], and existing work has
many limitations. For example, Qian et al. [48] proposed
LPCC, a caching technique that integrates SSDs in the Lus-
tre [8] clients to improve read/write performance. However,
LPCC is inefficient for data sharing and metadata-intensive
access because data stored on the Lustre clients’ SSDs must
be flushed to the Lustre server before being shared. Herold
et al. [25] proposed BeeOND, which functions similarly to
LPCC but inherits the scalability and cache sharing limita-
tions of BeeGFS.

Currently, we have entered the era of exascale supercom-
puters, which leads to a sharp increase in concurrent I/O. At
the same time, the I/O requirements of HPC applications vary
widely. How to unify the advantages of local BB and shared
BB to meet the various application requirements and reduce
the cost of building BB is an urgent problem to solve. More-
over, both the local BB and the shared BB have the advantage
of high performance compared with the traditional global
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file system (e.g., Lustre, and we will use “GFS” to represent
“global file system” in this paper.) but have the disadvan-
tage of small capacity. So, BBs must work in conjunction
with the GFS to meet capacity requirements. But the existing
BBs either run in a static data migration mode [16, 43, 48]
or require applications to migrate data through computing
nodes [24, 51, 52], which has low migration efficiency and
leads to a waste of computing resources. Large-scale BB data
management and migration is also a problem that needs to be
solved.

To solve these problems, we propose a novel BB file sys-
tem, HadaFS, building on the shared BB deployment, which
combines the scalability and performance advantages of local
BB with the data sharing and deployment costs advantages
of shared BB. HadaFS proposes a new architecture named
Localized Triage Architecture (LTA) to solve the problem of
insufficient scalability of the shared BB. LTA constructs all
HadaFS servers as a shared storage pool, flexibly controlling
the concurrency scale between clients and servers to ensure
convenient data sharing. Additionally, HadaFS proposes a
runtime user-level interface to ensure that I/O requests can be
processed on the nearest server, helping clients use the BB in
a manner that approximates the local BB. To solve the per-
formance problems caused by the strong POSIX consistency,
HadaFS proposes a full-path indexing approach, using the K-
V approach instead of the traditional directory tree, supporting
three-category metadata management policies. What’s more,
HadaFS integrates a data management tool to help users man-
age data in the BB, and migrate data between the BB and the
GFS quickly and efficiently.

HadaFS has been deployed on the Sunway New-generation
Supercomputer (SNS) [36], serving hundreds of applications,
supporting a maximum of 600,000-client scaling, with an I/O
aggregation bandwidth of 3.1 TB/s. The main contributions
of this paper include:

• This paper describes a novel BB file system named
HadaFS and performs a comprehensive experimental
study on the SNS to evaluate its effectiveness.

• This paper proposes the LTA architecture, which enables
the application-oriented data layout, achieves scalability
on par with node-local BBs, and reduces interference
caused by a large number of connections on a single
server.

• HadaFS proposes three metadata synchronization strate-
gies to address the mismatch between traditional file
systems’ complex metadata management and HPC ap-
plications’ various consistent semantics requirements.

• This paper proposes a localized data management
method that enables all BB nodes to execute data man-
agement commands in parallel via a pipeline, enabling
efficient data query and fast data migration between the
BBs and the GFS.

2 Motivation and Background

2.1 Motivation
As I/O requirements for HPC applications continue to grow,
BBs have been introduced to many cutting-edge supercom-
puters. However, the existing major types of BB technologies
still have many limitations.

2.1.1 The contradiction between BBs’ scalibility and ap-
plication behaviors

With the barrier to exascale computing being broken, the
I/O concurrency of cutting-edge supercomputers can reach
hundreds of thousands, which stresses the scalability of BBs.
At the same time, the increase in the proportion of data sharing
applications such as AI and workflow has led to changes in
I/O requirements, and high-speed sharing of large-scale data
has become much more important [45].

Building a more flexible BB architecture to meet the new
changes in supercomputer systems and application require-
ments has become a challenge for the design of exascale super-
computers. Currently, some cutting-edge supercomputers use
different solutions. For example, Frontier is an exascale super-
computer and uses independent hardware to build the local BB
and the shared BB, respectively [44]. But this method requires
many acceleration devices (SSDs) and high construction and
maintenance costs. Fugaku deploys the shared BB and uses
software to provide storage services similar to the local BB
and the shared BB with different name spaces [21]. But their
implementation is static and is challenging to control perfor-
mance contention during large-scale I/O concurrency. Summit
deploys the local BB and supports data sharing through the
software [43]. But this method requires data sharing through
GFS storage, which is inefficient.

In summary, the above methods have obvious advantages
and disadvantages. Since shared BB can also be deployed
on computing or data forwarding nodes [21, 66], from the
perspective of cost control, we believe the shared BB deploy-
ment is more suitable for future ultra-large-scale computing
node systems. To this end, in this paper we investigate how,
starting from a shared BB model, we can attain the benefits
of the local BB model to better address the requirements of
HPC applications at exascale and beyond.

2.1.2 Complex metadata management mismatches ap-
plication behaviors

Traditional file systems are designed for generality, so their
file management is implemented in the directory tree structure
and strictly follows the POSIX protocol. However, in HPC,
computing nodes are generally responsible for reading and
writing data and rarely perform directory tree access [32].
So relaxation of POSIX has become a common choice for
many file systems [6, 12, 43, 59] to improve the performance.
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However, due to the wide variety of HPC applications, how
to relax POSIX remains a huge challenge.

Table 1: Applications and their suitable consistency semantics
Consistency Semantics Applications

Strong consistency –
Commit consistency FLASH-HDF5 [60]
Session consistency NWChem [58], QMCPACK [29], VASP [55]

LBANN [20], Chombo [4], VPIC-IO [64]
Eventual consistency ENZO [9], pF3D-IO [31], HACC-IO [38]

Wang et al. [60] studied the requirements of some typical
HPC applications and classified the consistency semantics of
HPC file systems into strong consistency semantics, commit
consistency semantics, session consistency semantics, and
eventual consistency semantics, as shown in Table 1. The
higher the degree of consistency a system supports, the more
adaptable it is, but at the cost of higher overhead. And different
HPC applications have different requirements for consistency.
Therefore, it is a big challenge to choose consistency seman-
tics flexibly to balance the application’s requirements and
exploit the BB performance.

2.1.3 Inefficiencies in data management

A recent study found that although most applications on Sum-
mit and Cori can use the BB to speed up I/O performance, the
BB utilization is low, and it is necessary to develop flexible
data management tools for users [7]. Besides, the BB is not a
place for applications to persistent store data in most cases.
On the one hand, the BB capacity is smaller than the GFS
capacity, e.g., Summit’s BB capacity is 7.4PB while its GFS
capacity is 250PB [26], Fugaku’s BB capacity is 16PB while
its GFS capacity is 100PB [21]. On the other hand, some typi-
cal HPC applications require hundreds of terabytes of data to
input or output, e.g., NICAM-LETKF [69] has nearly 300,000
files and over 400 terabytes, Tokmark [65] has 32,768 files
and nearly 100 terabytes. So, the BB system needs to consider
efficiently and conveniently migrating data between the BB
and the GFS.

Data migration between the BB and the GFS can be divided
into two types: transparent and non-transparent. In transpar-
ent data migration, software automatically migrates the BB
data to the GFS in blocks or files [16, 43, 48], which may
cause a large amount of unnecessary data migration. In non-
transparent migration, data migration often needs computing
nodes to participate, leading to the computing resource being
idle during the data migration process [24, 51, 52] and wast-
ing resources. Both of the above types support loading data
from the GFS to the BB asynchronously statically in advance,
which can satisfy the data readahead requirements. However,
neither of the above two types could support users to dynam-
ically manage the BB data migration during the application
running, which is very unfavorable for efficient utilization of
the BB.

2.2 Background

The SNS is built on Sunway’s new-generation heterogeneous
high-performance many-core processors and interconnection
network chips and adopts a similar architecture to Sunway
TaihuLight [13]. The supercomputer consists of a computing
system, interconnection network system, software system,
storage system, maintenance and diagnosis system, power
supply system, and cooling system. Figure 1 shows the overall
architecture.

Figure 1: Architecture of the SNS

Each computing node contains one Sunway new-generation
many-core processor SW26010P, which adopts a heteroge-
neous architecture similar to SW26010 and has 6 CGs (Core
Groups [36]) with 390 computing cores. These components
are interconnected through a ring network. The whole system
is composed of more than 100,000 SW26010P processors,
which are interconnected by a fat-tree network called SWnet.

The computing nodes are connected to the I/O forward-
ing nodes through the interconnection network, and the I/O
forwarding nodes provide I/O request forwarding or storage.
When providing I/O request forwarding, the SNS adopts a sim-
ilar software architecture to TaihuLight (LWFS+Lustre [13])
and connects to the storage nodes through a separate storage
network. When providing storage services, the SNS adopts
a new software architecture and deploys a burst buffer file
system, HadaFS, which is proposed in this paper. The I/O
forwarding nodes serve as the HadaFS servers and use NVMe
SSDs to handle users I/O requests.

3 Design and Implementation

3.1 Overview of HadaFS

Figure 2 shows the overall architecture of HadaFS, includ-
ing the HadaFS client, HadaFS server, and data management
tool. HadaFS serves as a shared burst buffer file system and
can provide a global view for each client. The HadaFS client
runs on the computing nodes and serves as a static/dynamic
library that intercepts and redirects the POSIX I/O requests
from applications to the HadaFS server, which means the
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lifecycle of the HadaFS client is entirely dependent on ap-
plications. Note that HadaFS does not support the move, re-
name, or link operation as recent studies have demonstrated
that these functions are rarely or not used at all during par-
allel application running [32]. The HadaFS server runs on
the dedicated burst buffer nodes where NVMe SSDs are
deployed, providing global data and metadata storage ser-
vices. Each file in HadaFS is associated with two types of
servers. One type is the data storage server that stores the
HadaFS file’s data through the basic file system on NVMe
SSDs, and the other type is the metadata storage server that
stores the HadaFS file’s metadata through a high-performance
database (RocksDB [17]). The data management tool, named
Hadash, runs on the user login nodes and is used to manage
the data migration between the global file system and HadaFS.
More details can be seen in Section 3.7.

Global File System 
(Disk array & storage server)

...

...

Applications running on computing nodes

Hadash Server 
(Redis node)

Hadash UI 
(Manage node)

Server 
(Buffer node)

NVMe SSD

Server 
(Buffer node)

NVMe SSD

Server 
(Buffer node)

NVMe SSD

User

Client 
(Rank 0)

HPC App

Client 
(Rank 1)

HPC App

Client 
(Rank N)

HPC App

HadaFS Hadash

Figure 2: Architecture of HadaFS

3.2 Localized Triage Architecture

The traditional kernel file system handles the application’s
I/O requests by mounting the file system through the operat-
ing system, requiring to implement the full POSIX semantics
and introducing the kernel’s overhead of I/O requests stage-in
and stage-out. An alternative method is to mount the file sys-
tem through the application and bypass the kernel. Although
this method can help clients avoid many rules that the kernel
imposes on a file system and reduce the overhead of I/O re-
quests stage-in and stage-out of the kernel, too many links
are not conducive to large-scale expansion and may lead to
service instability [71]. For example, for a computing node
with 24 CPU cores, a file system client running in the kernel
mode can be accessed by all processes running on the node
only after mounting once. In contrast, each application pro-
cess has to mount a client for a file system running in the
user space. Obviously, both methods have certain limitations.
HadaFS combines both advantages in a new approach named
Localized Triage Architecture (LTA).

HadaFS follows the idea of bypassing the kernel and uses
it by directly mounting the client into the application. In order
to control the number of clients served by a single server at the
same time and avoid the performance bottleneck caused by
too many clients connected to a single server, HadaFS adopts
the method of connecting only one server per client. For a
HadaFS client, we call the HadaFS server connected to it the

bridge server. The bridge server is responsible for handling
all I/O requests generated by the client and writes data to the
underlying file based on the offset and size of the I/O request
initiated by the client. Each file corresponds to an independent
file in the underlying file system(ext4) on the bridge server.
When the client needs to access data on another server, it must
be forwarded through the bridge server. Therefore, servers
are a fully connected structure. Note that if the storage space
of one bridge server is filled up, all the clients connected to it
will automatically switch to another HadaFS server.

Considering that the number of clients (computing node
processes) in an ultra-scale supercomputer will be much larger
than the number of servers (storage nodes), it is a better way
to perform the necessary I/O forwarding through the full
connection of the server. In order to ensure that most I/O
requests are processed on the bridge server and reduce the
forwarding ratio of requests, HadaFS proposes an interface
(mount(mount_point,Seq)) to allow applications to control
the selection of bridge servers when this is advantageous.
mount_point stands for the mount point and is a prefix for
a file path in HadaFS. Seq can be set flexibly according to
changes in the application data sharing mode, network topol-
ogy differences, and other factors to adapt to the application’s
data parallelism and system architecture parallelism. Cur-
rently, HadaFS supports three types of settings:

• Seq is set to the MPI_RANK of the application, which
will connect the server for the client in a round-robin
manner. This setting is suitable when the application is
submitted to different computing nodes multiple times
to ensure that each application process can connect pre-
cisely to the original bridge server, thus reducing the
data forwarding during data access.

• Seq is set to the computing node ID, which can be used
to match the topology between the specific computing
node and the BB node, and helps ensure that the com-
puting node can store data in the nearest BB node in the
network.

• Seq is set according to the application’s actual data dis-
tribution and sharing requirements, which means each
client can specify any server it wants to connect to. So
applications can improve the efficiency of data access
by flexibly controlling the mapping between the clients
and the servers.

LTA not only provides each computing node with a bridge
server that runs as the local BB but also supports the shar-
ing of all clients through the full interconnection between all
bridge servers, combining the advantages of the local BB and
the shared BB. Moreover, mount_point and Seq can be con-
trolled by the environment variables, so HadaFS can support
transparent mounting for users by loading the HadaFS library
to read environment variables in advance before the applica-
tion starts. However, to fully exploit the high performance
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of HadaFS, especially for read performance, we advise ap-
plications to change their code to specify the client-to-server
mapping, which can help reduce the data forwarding. Af-
ter HadaFS mounted, applications can perform I/O with the
interface, which is exactly the same as POSIX file operations.

3.3 Namespace and metadata handling
In order to improve the scalability and performance,
HadaFS abandons the idea of directory trees and employs
a full-path indexing approach like CHFS [57] and Vesta [14].
For a file in HadaFS, its data is stored on the bridge server
of the HadaFS client that generated the file, and its metadata
storage location is determined by the path hash. Files’ meta-
data are stored by key-value, and the file path is a globally
unique ID (key). The HadaFS client performs compliance
checking on the absolute path of files based on its specific
prefix mount point instead of checking layer by layer in the
form of a directory tree. When multiple files need to be ac-
cessed, the load can be distributed to various servers, thus
significantly improving metadata performance [57].

The metadata of HadaFS is compatible with the metadata
items under the stat structure in Linux, including name, ino,
owner, mode, timestamp, etc. HadaFS divides its metadata
information into four categories:

• The first category is maintained during the file creation,
including name, owner, mode, etc.

• The second category is maintained during the file access,
including f ile size, modi f ication time, access time, etc.

• The third category is information that HadaFS does
not need to maintain, such as ino, stdev, etc. Since
HadaFS adopts the file path as the globally unique ID,
this information has no meaning in HadaFS.

• The fourth category is an ordered list of the location
information of the file segments. Each item in the list
is sorted by offset, consisting of server name, fragment
offset, size, writing time, and other information.

Two kinds of metadata databases are maintained on each
HadaFS server, and their data structures are shown in Fig-
ure 3. One is the local metadata database (LMDB), which
stores the first and fourth category metadata information of
the file locally, and the file’s local identification (LID) is the
local path corresponding to the file. The other is the global
metadata database (GMDB), which stores the first two and
the fourth categories of metadata information. The metadata
of a HadaFS file is stored in a unique GMDB on a HadaFS
server located by hashing the full path of the file.

Both metadata databases are built based on the RocksDB
[50], which is also used to maintain metadata by many other
famous file systems, such as GekkoFS [59], MadFS [28], etc.
Although RocksDB does not support multi-threaded shared

writing, it doesn’t constitute a bottleneck, and this is demon-
strated by both production-run and test scenarios. The keys of
the two metadata databases are composed of the user’s UID,
GID, and PAT H. The GID and UID are used to control the
range of string retrieval because HadaFS uses string prefix
matching to retrieve files. For the N-N I/O mode, each client
writes the independent file, and the metadata stored in the
LMDB matches the category one and four metadata stored
in the GMDB. For the N-1 I/O mode, multiple clients share
the same file and may use different HadaFS bridge servers.
At this time, GMDB is responsible for merging file metadata
from multiple LMDBs.

During the file reading and writing, LMDB records the
change of its metadata, maintains an ordered list of local
data segment locations, and sends the data to the GMDB to
which the HadaFS file belongs. GMDB is responsible for
maintaining a global list of data segment locations for files to
support the global sharing of data between HadaFS servers.
More details can be seen in Section 3.6.2.

The GMDB server of PATH1 is
determined by its hash value

GMDB

Key

Server X

Value

uid:gid:PATHX

uid:gid:PATHM

Server\Segment-list

Server\Segment-list

. . .. . .
uid:gid:PATH1 Server\Segment-list

Server 1

LMDB

Key Value

Local data in SSD

uid:gid:PATH1 Metadata1-1

LID1 LID2 LIDM...

HASH by
PATH1

LMDB

Key Value

Local data in SSD

uid:gid:PATH1 Metadata1-2

LID1 LID2 LIDM...

HASH by
PATH1

Server 2

Figure 3: Two K-V tables on the HadaFS server

3.4 HadaFS I/O control and data flow
Here, we discuss the control and data flow details of HadaFS.
Figure 4 shows an example with three HadaFS clients and
three HadaFS servers:

• Client A performs an I/O request to create a file F1 and
write 100-MB data. The data will be written directly to
client A’s bridge server, X.

• Server X writes the metadata information and location
information of F1 to the LMDB.

• Based on the file path of F1, the metadata of F1 is calcu-
lated to be stored on server Y. Then, server X writes the
metadata information and location information of F1 to
the GMDB on server Y.

• Client C performs an I/O request to read a file F1.

• Client C’s bridge server, Z, receives the I/O request and
gets the metadata and location information of F1 from
server Y based on the path of F1.

• Server Z reads data from server X and forwards it to
client C.
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Note that ensuring local writes and global readability of
data streams is advantageous, especially for scenarios where
the application needs to output checkpoints frequently. Be-
sides, read-intensive applications can also achieve high per-
formance through the mount interface, which can control the
mapping relationship between the client and the bridge server
to reduce the probability of forwarding as much as possi-
ble and improve read performance. In summary, approaches
proposed by HadaFS not only help constrain the number of
clients undertaken by each server and reduce performance
jitter but also lay the foundation for the storage system to
support the application’s parallelism fully.

r2: get
metadata

 
Client A

 
Client B

 
Client C

 
Server Y

 
Server X Server Z

Rank M: 
write segment (PATH,

offset 1MB,  size 2MB)

Rank N: 
read segment (PATH, offset

1MB,  size 1MB)

w1: send write
request

r1: send read
request

r3: read segment
data

w2: put metadata to
LMDB

w3: put
metadata to

GMDB

Figure 4: An example of HadaFS I/O control and data flow
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Figure 5: The stage-out flow of Hadash

3.5 Data management tool
We seek to overcome some disadvantages of existing BB ap-
proaches, such as LPCC [48] and Datawarp [24]. LPCC may
result in the migration of large amounts of temporary data.
Datawarp requires the application to specify the migration
between the BB and GFS in their source code or job sub-
mission scripts, which is usually a static migration approach
and requires computing nodes to participate in the migration.
HadaFS provides a data management tool named Hadash to
support users in retrieving and managing files in the directory
tree view, which is divided into two categories according to
functions: metadata information query and data migration.

The metadata information query mainly provides com-
mands such as ls, du, f ind, grep, etc. Among them, ls and
f ind support file information query with directory tree view.
Hadash obtains information from the metadata database for
these query-type operations and presents them in commands
commonly used in the Linux shell. The other commands
involve data migration, such as rm, get, put, etc. Hadash
sends the commands to the data management modules on

the HadaFS servers through a specific Redis [49] pipeline.
Then, the data management module on each HadaFS server
uses LMDB for local data location and executes these com-
mands in parallel.

Figure 5 shows an example of the data migration flow from
HadaFS to the GFS. Firstly, the user sends a data manage-
ment command to the Hadash server via Hadash UI. Secondly,
the Hadash server receives and forwards the command to all
Hadash agents on the BB nodes. Thirdly, the Hadash agents
parse the command, obtain the list of files specified by the
command from LMDB, and then read these files from the
local SSDs. Finally, the Hadash agents write these files to
the GFS. When all files have finished writing, the Hadash
agents will return success via another Redis pipeline, and then
Hadash will tell the user that the stage-out has been completed.
If the file to be migrated is continuously appended, Hadash
will also continuously copy the newly written data. This be-
havior is the same as that of Linux’s default data copying tool,
cp. It is worth mentioning that Hadash uses a prefix-matching
approach to present a virtual directory tree in data manage-
ment, and the prefix-matching approach could be executed
locally through the LMDB, thus reducing the impact on the
GMDB.

Hadash uses a distributed management method to support
data localization management. During the data management
process, there is no need to know all the data views on the BB
nodes, so its performance can grow linearly with the number
of BB nodes (the main bottleneck is the GFS client).

3.6 Optimizations on HadaFS

3.6.1 Consistency semantics and metadata optimization

HadaFS adopts the idea of relaxed consistency semantics as
other file systems [59]. HadaFS does not support cache data
on the client and the server. It relies on the cache mecha-
nism of the basic file system (ext4) to increase performance,
and its consistency semantics mainly depend on metadata
synchronization. Thus, HadaFS proposes three metadata syn-
chronization strategies for different application scenarios to
avoid the over-designing of traditional file systems.

The first strategy (called mode1) is to update all metadata
asynchronously (corresponding to eventual consistency se-
mantics). All operations are executed locally on the bridge
servers first during file opening, deletion, reading, and writ-
ing, and metadata will be updated asynchronously from the
LMDB to the GMDB later, which is the highest performance
metadata update mode. This strategy is equivalent to provid-
ing node-local storage for computing nodes and is suitable
for scenarios without data dependencies.

The second strategy (called mode2) is to update part of
the metadata synchronously and part of the metadata asyn-
chronously (corresponding to session consistency semantics
and commit consistency semantics). The first metadata cat-
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egory mentioned above (such as name, owner, etc.) will be
updated synchronously when the file is created. The second
metadata category (such as f ile size, modi f y time, etc.) will
be updated asynchronously during file reading and writing or
be updated synchronously by the flush operation. The second
strategy is the default way to use and beneficial to improving
file reading and writing performance.

The third strategy (called mode3) is to synchronize the
metadata in all open, read, and write operations during the
file access processes (slightly weaker than strong consistency
semantics since HadaFS does not support overlapping writes).
All servers need to get the file location first to ensure the syn-
chronization of the first metadata category, and all operations
such as open, write, read and flush need to synchronize the
second metadata category.

HadaFS has special data location rules and does not use
a distributed lock mechanism, so it isn’t easy to ensure data
consistency by HadaFS itself. If the application uses the N-N
I/O mode (also known as File Per Process), then there is no
data conflict because there is no file sharing. However, for the
N-1 write scenario, since HadaFS requires that the data be
written to the bridge server locally, it cannot support the over-
lap write in the N-1 Mode. In addition, atomic write is only
supported under the third metadata synchronization strategy.
To ensure data consistency, users must at least understand the
file-sharing mode of the application, which could be obtained
through Darshan [11], Beacon [67], etc.

3.6.2 Optimization on the shared file

The LTA architecture is suitable for N-N I/O mode, which
can realize multi-file parallelism and help fully utilize the
performance of the BBs. For N-1 I/O mode, HadaFS pro-
poses a management method similar to ADIOS BP file lay-
out [40] to improve the performance, where each client writes
its own data in an independent file (corresponding to BP’s
process group), and the GMDB maintains the file’s meta-
data(corresponding to BP’s group index). In this way, a shared
file can be stored on multiple servers, and the reading and writ-
ing of the shared file can be converted into concurrent reading
and writing. However, since the HadaFS server stores data
in file format, the data layout of each process is completely
unknown, so the amount of fragment information managed by
the GMDB may be high in extreme scenarios, which affects
system performance. For example, suppose there are 100,000
processes concurrently writing a shared file, and each process
writes 6 times consecutively. In a completely random case
(no fragment information to merge), it may produce 600,000
file fragments.

To this end, HadaFS uses a list sorted by offset to store seg-
ment location information and merges location information
for adjacent segments of the same bridge server to improve the
performance of the segment management. The average time
complexity of segment insertion and retrieval during write

and read is O(logN), where N is the number of segments in
the file. All three metadata synchronization strategies support
N-1 mode, and the metadata of a file will only be stored in one
GMDB. Each GMDB uses one thread to access the RocksDB,
and the peak IOPS of a GMDB is the peak IOPS for accessing
a single file when using the third metadata strategy.

3.6.3 Interference avoidance

As we all know, there are many jobs running simultane-
ously on supercomputers. These jobs tend to compete for
shared resources, resulting in I/O interference. I/O interfer-
ence is a serious problem known to modern supercomputer
users [19, 30, 33]. Many studies have also proved that dy-
namically mapping the client to the server is also helpful in
improving application performance [27, 72]. Since the shared
BBs support data sharing for many applications, the clients be-
longing to different jobs may share the same server, resulting
in resource competition and performance degradation. Thanks
to the flexible design of HadaFS, users can dynamically for-
mulate the connection relationship from the HadaFS clients
to the HadaFS servers, which can effectively help isolate
the BB resources for different applications to solve the I/O
interference between jobs. Section 4.4.3 demonstrates the
effectiveness of HadaFS in avoiding interference with five
real-world applications.

Moreover, we have also noticed that the flexible design
of HadaFS has also led to high requirements for users who
want to fully utilize HadaFS, as mentioned in Section 3.6.1
and Section 3.2. In order to reduce the burden on users, the
HadaFS team is developing an automatic server assignment
tool based on the monitoring tool [67] and adaptive I/O opti-
mization framework [68]. This tool can automatically assign
underlying BB resources, set the mount environment vari-
ables, and select the metadata synchronization strategy for ap-
plications, helping users isolate the underlying BB resources
and improve the performance of their applications.

3.7 HadaFS on the SNS

HadaFS has been deployed on the SNS for over a year and
supports hundreds of applications, including the 2021 Gor-
don Bell Award finalist application (Tokamak Plasma Sim-
ulation) [65] that scales to 480,000 processes (32,768 I/O
processes) via HadaFS with an I/O aggregation bandwidth of
700 GB/s. Figure 6 shows the deployment of HadaFS. There
are two HadaFS server on every I/O forwarding node, and
each HadaFS server uses an NVMe SSD to support the stor-
age of the HadaFS file’s data (with ext4) and metadata (with
LMDB and GMDB).

As we all know, the overhead of achieving fault tolerance
can be significant. Therefore, HPC storage systems often
transfer high availability to the application layer for implemen-
tation to pursue higher performance. Most HPC applications
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generally use periodic write checkpoints [6] to reduce the cost
of restoring applications after failures occur. So, HadaFS is
positioned as a temporary high-performance BB system, sim-
ilar to the BB system on Frontier [44], Summit [43], etc. The
Sunway new generation supercomputer doesn’t adopt erasure
code or data redundancy to handle node failures. If a BB node
fails, HadaFS can be available after the BB node recovery as
long as the SSD is not damaged. Moreover, in order to reduce
the cost of recovering data in case of failure, HadaFS sup-
ports applications to periodically back up key data to the GFS.
There have been 15 BB node failures but no SSD corruptions
for over a year of deployment.
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Figure 6: The deployment of HadaFS

4 Evaluation

We carry out the evaluation on the SNS to test the perfor-
mance of HadaFS. The SNS contains more than 100,000
computing nodes, and each node can start up to 6 MPI pro-
cesses and 6 HadaFS clients. That means the whole ma-
chine can support more than 600,000 MPI processes and
600,000 HadaFS clients. It has a total of 600 I/O forward-
ing nodes, and each I/O forwarding node is configured with
two 3.2TB NVMe SSDs (Each NVMe SSD corresponds to
a HadaFS server). All nodes are interconnected using the
SWnet network, and HadaFS uses the SWnet-based RDMA
protocol to transfer data. We compare the performance of
HadaFS with BeeGFS (a popular parallel file system that
many supercomputers have used to manage the BB [3,25,41])
and GFS (the traditional parallel file system used by the SNS
based on LWFS [67] and Lustre [8]). To ensure the evaluation
fairness, we slightly modify BeeGFS (version: 7.2.5) to make
it better suited to the SNS, including using the SWnet to pro-
vide the high-speed RDMA communication and increasing
the number of processes for managing services to achieve
high-speed mounting performance. And, BeeGFS is config-
ured with the same number of storage servers and metadata
servers as HadaFS. For GFS, it uses a similar forwarding
architecture as Sunway TaihuLight [13], consisting of 132
OSSs and 4 MDSs.

4.1 Metadata performance evalutaion
In order to improve the metadata performance, HadaFS pro-
poses three metadata management strategies. Here, we use
mode1, mode2, and mode3 to represent these three strategies

as mentioned in Section 3.6.1.
We first use MDTest [2] (A benchmark for metadata per-

formance evaluation) to compare the metadata performance
differences of HadaFS, GFS, and BeeGFS with parallel scales
of 1024, 4096, 16384, and 65536 processes. 4, 16, 64, and 256
I/O forwarding nodes are used for HadaFS and BeeGFS, each
running a data server and a metadata server on a common
SSD. Note that the number of the GFS metadata servers in
this experiment is 4 due to the limited metadata servers of the
Lustre file system.

Figure 7(a), 7(b), and 7(c) show the OPS comparison of
Create, Stat, and Remove, respectively. Mode1 has the highest
performance. Mode2 has comparable performance to mode3
because there is no read/write operation in the MDTest set-
ting. BeeGFS metadata performance is similar to HadaFS’s
mode2 and mode3 for 1024 processes. When the number of
test processes increases, both HadaFS and BeeGFS obtain
the higher performance, but the performance of BeeGFS is
slightly slower than HadaFS. Besides, BeeGFS can not scale
up to 65,536 processes. The main reason is that BeeGFS
needs to mount 16384 clients to support 65,536 processes
on the SNS, but it cannot mount successfully at such a large
scale due to the limitation of centralized management service
(It isn’t easy to successfully mount clients in batches after
exceeding 10,000 nodes). Unsurprisingly, the traditional file
system GFS has the lowest performance due to the perfor-
mance overhead caused by data forwarding software LWFS
and the limited metadata servers of Lustre.

4.2 Data performance evaluation

Here, we use IOR [53] (A benchmark for data performance
evaluation) to compare the I/O bandwidth differences between
HadaFS, GFS, and BeeGFS with parallel scales of 1024, 4096,
16384, and 65536 processes. The request size is set to 8 KB
for random read/write and 1 MB for sequential read/write. 4,
16, 64, and 256 I/O forwarding nodes are used for HadaFS and
BeeGFS, each running a data server and a metadata server on
a common SSD. Specifically, for GFS, the data server is the
Lustre OSS, and the metadata server is the Lustre MDS. All
132 OSSs (located on the storage nodes) and 4 MDS are used
in the experiment.

Figure 8 shows the results. For HadaFS, mode1 has the
highest performance, followed by mode2, and finally mode3.
HadaFS does not show a significant performance advantage
at smaller scales, but as the scale reaches 65,536 processes,
HadaFS performs much better than other file systems. For
read operations, HadaFS can approach the theoretical perfor-
mance limit of SSDs. For write operations, random writes are
not conducive to the performance of HadaFS due to the in-
ability to utilize the kernel caching mechanism. For BeeGFS,
it can perform close to mode1 and mode2 sometimes but still
cannot scale to 65,536 processes. Expectantly, GFS has the
lowest performance again due to the forwarding overhead (see
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Figure 7: Metadata performance comparison

Section 4.1) and the storage medium (OSTs are constructed
by HDDs).

In addition, we also scale HadaFS to 600,000 clients and
1200 servers, and Figure 9 shows the experiment results. Since
mode2 is a default metadata management strategy of HadaFS,
all tests are done based on mode2, and the request size is set to
1 MB. Comparing the theoretical performance of 1200 NVMe
SSDs (3.4 TB/s and 3.1 TB/s for read and write, respectively),
the bandwidth utilization of the SSDs is close to 90% under
ultra-large-scale concurrent data access.

4.3 Data migration evaluation

In order to manage data migration between the BB system
and the GFS quickly and efficiently, HadaFS provides a data
management tool named Hadash. Here, we evaluate Hadash in
terms of its I/O throughput and its ability to migrate small files
compared with Datawarp [24] simulated by Slurm-LUA [52]
(Datawarp and LUA are the only two BB plugins supported
by Slurm). And like BeeGFS, we construct a new LUA script
based on a BB-LUA-example provided by Slurm to fit the
experimental environment to ensure fairness. HadaFS is con-
figured with 256 data servers and 256 metadata servers, and
Datawrap is configured with 4096 processes for data migra-
tion.

First, we use 4096 files for the data stage-in and stage-out
experiments, and the total data volume of these files ranges
from 256 MB to 64 TB. Figure 11 shows the results of the
experiment. When the total volume of the files to be migrated
is relatively small (less than 64 GB for stage-in and less than
16 GB for stag-out), Hadash obtains a slightly worse perfor-
mance than Datawarp. This is because when the total volume
is small, the size of the individual files is also small, resulting
in the command distribution and result acquisition mechanism
based on the Redis pipeline occupying a larger proportion of
the time. However, as the total volume and the individual file
size get larger, the I/O throughput of Hadash stabilizes around
100 GB/s (for stage-in) and 140 GB/s (for stage-out), which
is much higher than Datawarp.

Additionally, we found that the stage-out performance is

significantly better than the stage-in performance. The write
performance of the GFS and the read performance of the
BB determines the stage-out performance, while the read per-
formance of the GFS and the write performance of the BB
determines the stage-in performance. In our test, the GFS
(Lustre) client has a write cache, so the write performance of
the GFS is higher than the read performance, and the read per-
formance of the BB is also higher than the write performance,
which leads to the higher stage-out performance.
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Figure 8: I/O throughput comparison
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Figure 9: Ultra-scale performance

We also evaluated Hadash’s ability to handle large amounts
of small files. Figure 12 shows the result of the experiment
using different numbers of 4-KB small files for the data stage-
in and stage-out. For stage-in, Hadash outperforms Datawarp
significantly when the number of small files exceeds 10,000
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while Datawarp’s performance varies less. For stage-out,
Hadash outperforms Datawarp significantly when the number
of small files exceeds 100,000.

Again, the performance of stage-out is better. One of the
reasons is as stated above, and another reason is as follows.
In the stage-in flow, Hadash needs to read all files in a single
directory from the GFS, and this process takes longer as the
number of files in a single directory increases. In contrast,
Hadash does not need to read any files in the directory from
the GFS in the stage-out flow and only needs to create files.

4.4 Evaluation with real-world applications
4.4.1 Performance evaluation on the shared files

For the shared file access pattern, HadaFS adopts the idea
of BP files similar to ADIOS [39] and further improves the
shared file access performance by merging adjacent segments
through ordered lists. This subsection compares the perfor-
mance differences between HadaFS and BeeGFS on shared
file access using several applications. Both HadaFS and
BeeGFS are configured with 16 servers, each running on a
common SSD. Figure 10 shows the results.

First, we use VPIC-IO [64] (provides scalable writing
HDF5 data by VPIC) to evaluate the performance of
HadaFS when writing shared files. Applications’ parallelism
scales from 1 to 4096, and each process writes about 1.1-
GB data to a shared file containing 8 variables. Figure 10(a)
shows the results. BeeGFS performs better than HadaFS when
the application’s parallelism is less than 64. This is because
BeeGFS clients can use the kernel’s cache, and the striping
technique used by BeeGFS can ensure a low probability of
conflict at small scales. However, as the parallelism gets larger,
HadaFS outperforms BeeGFS significantly due to its good
scalability.
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Figure 10: Performance evaluation on the shared file

Then, we use BD-CATS-IO [46] (provides scalable read-
ing HDF5 data by the VPIC) to evaluate the performance
of HadaFS when reading shared files. Applications’ paral-
lelism also scales from 1 to 4096, and each process reads
about 1.1-GB data from a shared HDF5 file. Figure 10(b)
shows the results. BeeGFS and HadaFS have almost the same
performance when the parallelism of applications is less than
256. Similar to the write performance, when the application
scale gets larger, the performance of HadaFS will be signifi-

cantly better than that of BeeGFS, as HadaFS uses the LTA
architecture to better isolate I/O conflicts between different
clients.

4.4.2 Performance evaluation on the mount policy

Compared to the traditional fully connected mount approach,
HadaFScannot guarantee that the data demanded by the client
is always on its bridged server, so we first evaluate the perfor-
mance impact of I/O forwarding on HadaFS. We distribute
files evenly and regularly on the server according to the
RANK number in advance and then accurately control the
forwarding of generated data between servers through the
mount interface.

We use one process to evaluate the latency variation of dif-
ferent block sizes due to the I/O forwarding, and Figure 13(a)
shows the results. The solid line in the figure represents the
client’s direct access latency to its bridge server, while the
dashed line represents the I/O forwarding latency. I/O for-
warding does cause an increase in latency. The larger the
block size, the smaller the proportional increase in latency.
For 8-KB and 1-MB block sizes, the latency increases by
34.4% and 17.7%, respectively.
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We then evaluate the impact of the data forwarding ratio
on the bandwidth of HadaFS. The higher the data forwarding
ratio, the more data needs to be forwarded through the bridge
server. In the experiment, HadaFS is configured with 16,384
clients and 64 servers, and the I/O request size is set to 1 MB
for sequential read and 8 KB for random read. Figure 13(b)
shows the results. As the I/O forwarding ratio increases, the
throughput of HadaFS decreases, with a maximum loss of
18% for sequential read and 54% for random read. This is
because the smaller the block size, the larger the forwarding
overhead, and the larger the throughput loss.

However, note that HadaFS provides a runtime mount in-
terface to control the mapping relationships flexibly, which
can significantly reduce I/O forwarding. Let’s take NEMO
(a state-of-the-art modeling framework for research activi-
ties and forecasting services in the ocean and climate sci-
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ences) [70] and its post-processing as an example to illustrate
the advantages of the runtime mount interface. NEMO uses
N-N I/O mode (also known as File Per Process) to read and
write NetCDF files and is configured with 65,536 processes.
And its post-processing is configured with 512, 1024, and
2048 processes. It is worth mentioning that in real application
scenarios, the parallelism of the post-processing is signifi-
cantly smaller than the parallelism of the module application.
All 250,000 files (the total volume is more than 5 TB) output
by NEMO are stored in 16 HadaFS servers.

Figure 14 shows the results. In the default configuration,
the individual post-processing processes often need to ac-
cess data that is not on the bridge server. So, the forwarding
rate is high(up to 93%), and the performance is poor. After
re-mapping the client-to-server connections with the mount
interface, the forwarding rate can be greatly reduced, and
performance can be significantly improved, up to 30% or
more. This demonstrates that the flexible mount interface of
HadaFS can significantly improve the performance of appli-
cations that need to share data.
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Figure 13: Forwarding evaluation of HadaFS
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Figure 14: Performance improvement with mount interface

4.4.3 Performance evaluation on the interference

In this subsection, we evaluate HadaFS as a shared file sys-
tem with 5 real-world applications, including APT (a particle
dynamics simulation application) [62], WRF (a regional nu-
merical weather prediction system) [1], Shentu (an extreme-
scale graph engine) [34], CAM (a standalone global atmo-
spheric model deriving from the CESM project for climate
simulation/projection) [54], and DNDC (a biogeochemistry
application for agroecosystems) [22].

First, we simulate the common I/O interference caused by
sharing resources between jobs in HPC by co-running two
applications on the same HadaFS server, and each application
runs with 512 processes. Figure 15(a) shows the results. Each
block’s darkness reflects the application’s slowdown factor
at the row header by the application at the column header.

As we can see, since different applications have different I/O
behaviors, they share HadaFS with each other resulting in
varying levels of performance slowdown. For example, WRF
is a traditional serial I/O application that uses only one I/O
process to access files through the NetCDF library, and its I/O
load is very low (I/O bandwidth less than 200 MB/s). When
WRF shares HadaFS server with other applications, it has less
impact on them, as marked by the red box. On the contrary,
Shentu is an I/O intensive application with N-N I/O mode, so
its I/O bandwidth is very high (up to 2.5 GB/s). When Shentu
shares HadaFS server with other applications, it has a high
impact on them (up to 5x performance slowdown for other
applications), as marked by the blue box.

HadaFS supports a runtime user-level mount interface and
can assign the service resources according to the group name
mentioned in Section 3.6.3. So in the production environment,
HadaFS can flexibly change the mapping relationship from
HadaFS clients to HadaFS servers through the mount interface
to avoid I/O interference. Figure 15(b) shows the performance
of avoiding sharing HadaFS server with other applications
through the mount interface. This experiment demonstrates
that the flexible mount approach provided by HadaFS can be
beneficial for applications to avoid I/O interference.

(a) Before tuning (b) After tuning

Figure 15: Impact of HadaFS’s interference avoidance on
pairwise application co-run slowdown

4.4.4 Evaluation with large scale applications

This subsection shows the usage of HadaFS in five real-world
large-scale applications, including NEMO [70], TK (Tokamak
Plasma Simulation, 2021 Gorden Bell Prize finalist) [65],
DiDA (an AI-enabled large-scale parallel atmospheric data-
assimilation system) [23], Jstack (a debugging tool for the
SNS) [47], and SWLBM (an efficient and scalable LBM) [37].

Figure 16 shows that applications can achieve significant
I/O improvement (at least 7x) and reduce their runtimes and
I/O ratios after using HadaFS, proving the effectiveness of
HadaFS in improving the large-scale applications’ perfor-
mance. Details are as follows. TK runs with 32,768 I/O pro-
cesses and 960 HadaFS servers, and the total runtime is more
than 48 hours. With HadaFS, the I/O percentage of the to-
tal runtime dropped from 9.4% to 1.5%. NEMO runs with
480,000 I/O processes and 1200 HadaFS servers, and the total
runtime of a model-year simulation is about 114 hours. With
HadaFS, the I/O percentage of the total runtime dropped from
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1.3% to 0.13%. DIDA runs with 65,536 I/O processes and
1200 HadaFS servers, and the total runtime is more than 2
hours. With HadaFS, the I/O percentage of the total runtime
dropped from 4.1% to 0.5%. Jstack runs with 100,000 I/O pro-
cesses and 256 HadaFS servers, and the total runtime is about
100 minutes every day. With HadaFS, the I/O percentage of
the total runtime dropped from 5.0% to 0.46%. SunwayLBM
runs with 18,000 I/O processes and 256 HadaFS servers, and
the average runtime is about 7 days. With HadaFS, the I/O
percentage of the total runtime dropped from 14.2% to 2.6%.
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Figure 16: Performance improvement for large-scale real-
world applications

5 Related work

Burst buffer on Top computers Many supercomputers
deploy Burst Buffers to accelerate applications’ I/O perfor-
mance. Summit [26] adopts the local BBs technology and
deploys SSDs on each computing node. To support data stag-
ing and migrate applications data to the GFS, Summit uses
two technologies. One is Spectral, which provides the block-
level data cache for applications. The other is SymphonyFS,
which provides the file-level data cache for applications [43].
Fugaku [18] deploys the shared SSDs on the dedicated BB
nodes (also used as the computing nodes but have two more
cores), with each BB node serving a portion of the computing
nodes, and provides users with three namespaces for differ-
ent BB usage through LILO [21]. Applications can select
the corresponding namespace according to the shared ac-
cess requirements of the data (intra-node, intra-application,
or inter-applications). As the world’s first exascale supercom-
puter, Frontier [44] builds both the local BB and the shared
BB. The local BB provides a burst data cache within the
node, while the shared BB provides a shared data cache. In
summary, the above situation shows that BB technology is
moving towards integrating the local BB and the shared BB
to support HPC applications’ various requirements. For su-
percomputers with more than 100,000 nodes, local BB needs
to deploy NVMe SSDs on each computing node, which will
undoubtedly increase the cost. HadaFS combines the advan-
tages of local BB and shared BB through the LTA architecture
and the application-controllable mount interface, which can
be deployed on ultra-scale supercomputers with more than
100000 nodes at a relatively low cost.

Researches for Burst Buffer Research on BBs has re-
cently become a hot topic and can be divided into three tech-
nical routes. The first one is to improve the traditional dis-
tributed file systems and add new functions to support BBs,

such as Lustre LPCC [48], which can cache data in client
SSDs for transparent data caching. However, this mechanism
inherits the scalability problems of traditional distributed file
systems and is difficult to scale to ultra-scale. Similarly, there
is BeeOND, which is based on BeeGFS [3]. The second one is
to add data-sharing mechanisms based on the local BBs, such
as Unifyfs [42], Burstfs [61], CHFS [57], Gfarm/BB [56],
etc. These file systems run on the user layer and will be cre-
ated when the job is submitted and destroyed when the job
completes. In order to take advantage of BB’s performance,
these file systems also use a consistent relaxation protocol
similar to HadaFS but does not consider data staging. The
third one is to build a full-featured persistent BB storage
system, e.g., DAOS [39]. DAOS [39] is an object storage
system developed based on SPDK/PMDK. It is organized in
an object-centric manner, supports transaction and multiple
consistency management methods, and supports POSIX se-
mantics based on object storage. Compared with the above
works, HadaFS is built based on Shared BB, which has more
advantages in scalability and has passed the verification of
ultra-large-scale deployment of more than 100,000 nodes. In
addition, HadaFS can provide applications with flexible and
controllable POSIX consistency semantics.

6 Conclusion

We present a Burst Buffer file system named HadaFS, bridg-
ing the local BB and the shared BB based on the shared BB
deployment. HadaFS can support ultra-scale deployments and
balance the performance and the overhead with the novel ar-
chitecture LTA and hierarchical metadata management mech-
anism. Besides, HadaFS integrates an internal data manage-
ment tool named Hadash, which can provide a global data
view and efficient data migration for users. HadaFS has been
deployed on the SNS (over 100,000 computing nodes) and
supports hundreds of applications. Especially, HadaFS sup-
ports several ultra-scale applications, providing stable and
high-performance I/O services for these applications in prepa-
ration for the ACM Gordon Bell bid. Moreover, We demon-
strate the high performance, high scalability, and low cost of
HadaFS through a comprehensive experimental study.

Acknowledgement

We appreciate the thorough and constructive com-
ments/suggestions from all reviewers. We thank our
shepherd, Rob Ross, for his guidance during the revision
process. This work is partially supported by the National
Key R&D Program of China (Grant No. 2020YFB0204800),
Marine S&T Fund of Shandong Province for Laoshan
Laboratory (LSKJ202202100), National Natural Science
Foundation of China (Grant No. U2242210), and the Major
Key Project of PCL (No. PCL2022A05).

226    21st USENIX Conference on File and Storage Technologies USENIX Association



References

[1] A description of the advanced research WRF version 3.
http://www2.mmm.ucar.edu/wrf/users/.

[2] Mdtest hpc benchmark, 2010. https://sourceforge.
net/projects/mdtest/.

[3] David Abramson, Chao Jin, Justin Luong, and Jake
Carroll. A beegfs-based caching file system for data-
intensive parallel computing. In Asian Conference on
Supercomputing Frontiers, pages 3–22. Springer, Cham,
2020.

[4] Mark F. Adams, Phillip Colella, Daniel T. Graves, Jef-
frey N. Johnson, Hans Johansen, Noel Keen, Terry J.
Ligocki, Daniel F. Martin, Peter McCorquodale, David
Modiano, Peter O. Schwartz, T. D. Sternberg, and Brian
van Straalen. Chombo software package for amr appli-
cations design document. 2014.

[5] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe,
Samuel Lang, Robert Latham, Robert Ross, Lee Ward,
and Ponnuswamy Sadayappan. Scalable i/o forwarding
framework for high-performance computing systems. In
2009 IEEE International Conference on Cluster Com-
puting and Workshops, pages 1–10. IEEE, 2009.

[6] John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. Plfs: a checkpoint filesystem for par-
allel applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and
Analysis, pages 1–12. IEEE, 2009.

[7] Jean Luca Bez, Ahmad Karimi, Arnab Paul, Bing Xie,
Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and
Jesse Hanley. Access patterns and performance behav-
iors of multi-layer supercomputer i/o subsystems under
production load. pages 43–55, 06 2022.

[8] Peter Braam. The lustre storage architecture. arXiv
preprint arXiv:1903.01955, 2019.

[9] Corey Brummel-Smith, Greg L. Bryan, Iryna S. Butsky,
Lauren Corlies, et al. Enzo: An adaptive mesh refine-
ment code for astrophysics. The Astrophysical Journal
Supplement Series, 211, 2019.

[10] Lei Cao, Bradley W. Settlemyer, and John Bent. To share
or not to share: comparing burst buffer architectures. In
SpringSim, 2017.

[11] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra,
Samuel Lang, and Katherine Riley. 24/7 characterization
of petascale i/o workloads. In International Conference
on Cluster Computing and Workshops, pages 1–10, New
Orleans, 2009. IEEE.

[12] Philip H Carns, Walter B Ligon III, Robert B Ross, and
Rajeev Thakur. {PVFS}: A parallel file system for linux
clusters. In 4th Annual Linux Showcase & Conference
(ALS 2000), 2000.

[13] Qi Chen, Kang Chen, Zuo-Ning Chen, Wei Xue, Xu Ji,
and Bin Yang. Lessons learned from optimizing the
sunway storage system for higher application i/o perfor-
mance. Journal of Computer Science and Technology,
35(1):47–60, 2020.

[14] Peter F Corbett and Dror G Feitelson. The vesta parallel
file system. ACM Transactions on Computer Systems
(TOCS), 14(3):225–264, 1996.

[15] Cray. Lumi supercomputer, 2022. https://www.
lumi-supercomputer.eu/.

[16] Bin Dong, Surendra Byna, Kesheng Wu, Prabhat, Hans
Johansen, Jeffrey N. Johnson, and Noel Keen. Data el-
evator: Low-contention data movement in hierarchical
storage system. 2016 IEEE 23rd International Confer-
ence on High Performance Computing (HiPC), pages
152–161, 2016.

[17] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Rocksdb: Evolution of development priorities
in a key-value store serving large-scale applications.
TOS, 17(4):1–32, 2021.

[18] Jack Dongarra. Report on the fujitsu fugaku system.
University of Tennessee-Knoxville Innovative Comput-
ing Laboratory, Tech. Rep. ICLUT-20-06, 2020.

[19] Matthieu Dorier, Gabriel Antoniu, Robert Ross, Dries
Kimpe, and Shadi Ibrahim. CALCioM: Mitigating I/O
interference in HPC systems through cross-application
coordination. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2014.

[20] Brian C. Van Essen, Hyojin Kim, Roger A. Pearce, Kofi
Boakye, and Barry Y. Chen. Lbann: livermore big ar-
tificial neural network hpc toolkit. Proceedings of the
Workshop on Machine Learning in High-Performance
Computing Environments, 2015.

[21] Fujitsu. File system and power management en-
hanced for supercomputer fugaku, 2021. https://www.
fujitsu.com/.

[22] Donna L Giltrap, Changsheng Li, and Surinder Sag-
gar. DNDC: A process-based model of greenhouse gas
fluxes from agricultural soils. Agriculture, Ecosystems
& Environment, 2010.

[23] Thomas M Hamill. Ensemble-based atmospheric data
assimilation. Predictability of weather and climate,
124:156, 2006.

USENIX Association 21st USENIX Conference on File and Storage Technologies    227

http://www2.mmm.ucar.edu/wrf/users/
https://sourceforge.net/projects/mdtest/
https://sourceforge.net/projects/mdtest/
https://www.lumi-supercomputer.eu/
https://www.lumi-supercomputer.eu/
https://www.fujitsu.com/
https://www.fujitsu.com/


[24] Dave Henseler, Benjamin Landsteiner, Doug Petesch,
Cornell Wright, and Nicholas J Wright. Architecture
and design of cray datawarp. Cray User Group CUG,
2016.

[25] Frank Herold, Sven Breuner, and Jan Heichler. An in-
troduction to beegfs, 2014.

[26] Jonathan Hines. Stepping up to summit. Computing in
science & engineering, 20(2):78–82, 2018.

[27] Xu Ji, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng
Zhu, et al. Automatic, application-aware i/o forwarding
resource allocation. In 17th USENIX Conference on File
and Storage Technologies, pages 265–279, 2019.

[28] chen Kang, Wu Yongwei, and zheng Weiming. Madfs:
a high performance burst buffer file system. Big Data,
7(3):150, 2021.

[29] Jeongnim Kim, Andrew D. Baczewski, Todd D. Beaudet,
Anouar Benali, et al. Qmcpack: an open source ab
initio quantum monte carlo package for the electronic
structure of atoms, molecules and solids. Journal of
Physics: Condensed Matter, 30, 2018.

[30] Youngjae Kim, Scott Atchley, and Galen M. Shipman.
LADS: Optimizing data transfers using layout-aware
data scheduling. In 13th USENIX Conference on File
and Storage Technologies (FAST), 2015.

[31] Steven Langer, Abhinav Bhatele, and Charles H. Still.
pf3d simulations of laser-plasma interactions in national
ignition facility experiments. Computing in Science &
Engineering, 16:42–50, 2014.

[32] Paul Hermann Lensing, Toni Cortes, Jim Hughes, and
André Brinkmann. File system scalability with highly
decentralized metadata on independent storage devices.
In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pages
366–375. IEEE, 2016.

[33] Yan Li, Xiaoyuan Lu, Ethan L. Miller, and Darrell D. E.
Long. ASCAR: Automating contention management
for high-performance storage systems. In IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2015.

[34] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang,
Wei Xue, Wenguang Chen, Lufei Zhang, Torsten Hoefler,
Xiaosong Ma, Xin Liu, et al. Shentu: processing multi-
trillion edge graphs on millions of cores in seconds. In
SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
706–716. IEEE, 2018.

[35] Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume,
and Carlos Maltzahn. On the role of burst buffers in
leadership-class storage systems. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–11. IEEE, 2012.

[36] Yong Liu, Xin Liu, Fang Li, Haohuan Fu, Yuling Yang,
Jiawei Song, Pengpeng Zhao, Zhen Wang, Dajia Peng,
Huarong Chen, et al. Closing the" quantum supremacy"
gap: achieving real-time simulation of a random quan-
tum circuit using a new sunway supercomputer. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–12, 2021.

[37] Zhao Liu, XueSen Chu, Xiaojing Lv, Hongsong Meng,
Shupeng Shi, Wenji Han, Jingheng Xu, Haohuan Fu,
and Guangwen Yang. Sunwaylb: Enabling extreme-
scale lattice boltzmann method based computing fluid
dynamics simulations on sunway taihulight. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 557–566. IEEE, 2019.

[38] LLNL. Hacc i/o benchmark summary, 2017.
https://asc.llnl.gov/sites/asc/files/
2020-06/HACC_IO_Summary_v1.0.pdf.

[39] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey
Koziol, John Bent, and Eric Barton. Daos and friends:
a proposal for an exascale storage system. In SC’16:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 585–596. IEEE, 2016.

[40] Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten
Schwan. Input/output apis and data organization for
high performance scientific computing. In 2008 3rd
Petascale Data Storage Workshop, pages 1–6. IEEE,
2008.

[41] Satoshi Matsuoka. Being “bytes-oriented” in hpc leads
to an open big data/ai ecosystem and further advances
into the post-moore era. In 2017 IEEE International
Conference on Big Data (Big Data), pages 5–5. IEEE
Computer Society, 2017.

[42] Adam Moody, Danielle Sikich, Ned Bass, Michael J.
Brim, and others. Unifyfs: A distributed burst buffer file
system - 0.1.0, 10 2017.

[43] Sarp Oral, Sudharshan S Vazhkudai, Feiyi Wang,
Christopher Zimmer, Christopher Brumgard, Jesse Han-
ley, George Markomanolis, Ross Miller, Dustin Lever-
man, Scott Atchley, et al. End-to-end i/o portfolio for
the summit supercomputing ecosystem. In Proceedings
of the International Conference for High Performance

228    21st USENIX Conference on File and Storage Technologies USENIX Association

https://asc.llnl.gov/sites/asc/files/2020-06/HACC_IO_Summary_v1.0.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/HACC_IO_Summary_v1.0.pdf


Computing, Networking, Storage and Analysis, pages
1–14, 2019.

[44] ORNL. Frontier exascale system, 2022. https://www.
olcf.ornl.gov/frontier/.

[45] Tirthak Patel, Suren Byna, Glenn K Lockwood,
Nicholas J Wright, Philip Carns, Robert Ross, and De-
vesh Tiwari. Uncovering access, reuse, and sharing
characteristics of {I/O-Intensive} files on {Large-Scale}
production {HPC} systems. In 18th USENIX Confer-
ence on File and Storage Technologies (FAST 20), pages
91–101, 2020.

[46] Md Mostofa Ali Patwary, Suren Byna, Nadathur Ra-
jagopalan Satish, Narayanan Sundaram, Zarija Lukić,
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