
W I N D R I V E R W H I T E P A P E R

Implementing Basic Memory
Protection in VxWorks:
A Best Practices Guide
Paul Chen
Product Manager, Wind River

Contents

Implementing Basic Memory Protection in VxWorks:
A Best Practices Guide

1. Introduction .1
2. Embedded Device Development Issues .1

Increasing software complexity .1
Compressed development times .1
Expanding device functionality .1
Demanding service-based economy .1
Increasingly connected devices .1

3. VxWorks and Memory Protection .1
4. VxWorks Basic Memory Protection .2

Protecting private data .2
Protecting shared data .3
Detecting buffer overruns / underruns .3

5. VxWorks Memory Protection using VxVMI .3
Protecting program code .4
Protecting the interrupt vector table .4

6. VxWorks Memory Protection using VxVMI: Advanced Best Practices .4
Protecting private data .4
Protecting shared data .5
Detecting buffer overruns / underruns .5
Examining virtual memory contexts .5

7. Getting VxVMI .5
VxVMI availability .5

8. Summary .6

1. Introduction
Wind River’s VxWorks® is the most
widely deployed real-time operating
system (RTOS) in the embedded
device market. With over 46 percent
share of the embedded RTOS
market1, VxWorks has enabled thou-
sands of customers worldwide to
deliver millions of reliable, high-
performance products to market —
rapidly, efficiently and cost-effective-
ly. To achieve the guaranteed
responsiveness and determinism
that are crucial characteristics of
mission- or life-critical applications,
VxWorks supports application devel-
opment exclusively in kernel (or
“supervisor”) mode. Executing in a
flat, non-protected memory space
enables applications to obtain the
utmost performance, determinism,
and application flexibility. Kernel
mode execution, however, precludes
the ability to take advantage of some
types of memory protection enforced
by a Memory Management Unit
(MMU). Use of an MMU can protect
application code, kernel code, and
critical data. This memory protection
is usually accompanied by a cost in
reduced system performance, due to
the implementation of a process
model-based or a message-passing
architecture.

As the sophistication of embedded
applications has increased, however,
issues of system reliability and
protection have become ever more
important. If an embedded system
can withstand some performance
degradation, its applications can
benefit from memory protection
mechanisms to improve reliability.
Errant or poorly designed applica-
tions can be prevented from having
harmful or disastrous effects on the
embedded system. Memory protec-
tion between applications supports a
“fault containment” concept, and can
limit the extent of the effect of cer-
tain types of software faults. Memory
protection also assists development,
catching memory trashing bugs dur-
ing integration or debug cycles that
are often difficult to detect and
diagnose.

While VxWorks does not provide
full memory protection and applica-
tion isolation, Wind River does offer
both basic MMU support that is

1

bundled with VxWorks, as well as
VxVMI™, an unbundled Operating
System (OS) Extension for VxWorks
that provides additional memory
protection features and program-
matic access to the MMU. The basic
memory protection features in
VxWorks utilize the MMU that is
present in many of today's proces-
sors to enhance productivity during
the development and debugging
cycles. Use of memory protection
can also improve the reliability and
quality of an embedded system by
reducing security risks in its applica-
tions, and can improve the device’s
time to market by making develop-
ment and debugging cycles both
more efficient and effective. To
enable developers to take advantage
of these benefits, this paper
describes some “best practice”
examples for implementing memory
protection in VxWorks when design-
ing reliable embedded applications.

2. Embedded Device Development
Issues
Over the past few years, Wind River
has been tracking key trends in the
embedded device market. The trends
relevant to this paper involve issues
facing the developers of embedded
devices. These issues have a direct
impact on system design require-
ments, as described below.

Increasing software complexity
Embedded applications comprising
several megabytes of code are
becoming commonplace. Larger
development teams, from different
divisions or business units or even
from different companies, collabo-
rate on designs and face an
increasing challenge to create robust
applications. System reliability must
be ensured inherently by a system's
software design, including OS-
provided memory protection, rather
than by relying on extensive system-
level integration testing.

Compressed development times
To remain competitive, developers of
embedded devices face increasing
pressure to shorten project develop-
ment cycles and to bring devices to
market more quickly. Use of memory
protection can greatly enhance the

efficiency of both development and
debugging phases of projects,
thereby improving the device’s time
to market.

Expanding device functionality
Embedded devices are becoming
open, multifunction, managed appli-
ances. Embedded applications will
become increasingly more dynamic
as vendors allow customization
(personalization), extensions, and
software updates on such devices.
Again, memory protection becomes
critical to device reliability.

Demanding service-based economy
As the economy becomes progres-
sively more service-based, it grows
more dependent on the timeliness
and availability of those services.
Downtime for the provider means a
loss of service revenue and customer
loyalty. Downtime for the consumer
means a denial of service access and
user frustration. These consumers,
unlike desktop users, are extremely
intolerant of failures. Systems
providing these services require pro-
tection from common memory faults
to improve their overall robustness.

Increasingly connected devices
When embedded devices are opened
up to the outside world, they must
preserve system reliability and
robustness through protective
measures against inadequately
debugged or poorly designed third-
party applications.

Due to these and other concerns,
memory protection has assumed
paramount importance for develop-
ers of embedded devices. Using
VxVMI, developers can meet this
requirement while obtaining the
small footprint, high performance,
reliability, and determinism that
VxWorks is known throughout the
industry for providing.

3. VxWorks and Memory Protection
VxWorks is a task-based RTOS in
which applications run in kernel (or
“supervisor”) mode. In this mode of
operation, all of physical memory
can be accessible to developers in
real-addressing mode. Applications
that execute in kernel mode can
achieve the highest performance and

1 “2002 Embedded Market Study,” CMP Media LLC, November 2002.

determinism, and have the utmost in
flexibility. One risk, however, of
executing in kernel mode is that any
area of memory — e.g., the applica-
tion code, data, or even the kernel
itself — can potentially be overwrit-
ten by software bugs or misbehaving
applications.

Many processors today provide an
on-chip or onboard Memory Manage-
ment Unit (MMU) that can be used to
protect memory against unintention-
al or undesired access. To enable
developers to take advantage of
memory protection in their VxWorks-
powered embedded devices, Wind
River provides bundled, basic MMU
support and an unbundled OS Exten-
sion called VxVMI. Some examples of
how memory protection can assist
the development of VxWorks appli-
cations include:

• Detection of buffer overruns or
underruns
Using either the bundled MMU
support or the APIs provided by
VxVMI, pages allocated around
local buffers can be write-protect-
ed so that attempts to write beyond
buffers can be detected both dur-
ing debugging and in commercially
deployed products and systems.

• Protection of private data
Using either the bundled MMU
support or the APIs provided by
VxVMI, private data areas can be
created for tasks that are pro-
tected from access by other tasks.

• Protection of kernel and applica-
tion code
VxVMI can automatically write-
protect text segment pages in
memory, so that attempts to write
to kernel or application code can
be detected during debugging and
in deployed products.

• Protection of the interrupt vector
table
VxVMI can automatically write-
protect the interrupt vector table,
so that attempts to overwrite this
table (usually through corrupted
memory references) can be
detected during debugging and in
deployed products.

• Detection of null pointer write
exceptions
Since the interrupt vector table is
typically located at memory

2

address 0x0, the protection of this
table by VxVMI also enables detec-
tion of writes to a null address.

By utilizing VxWorks memory pro-
tection, developers of software for
embedded systems can realize the
following benefits:

• Improved efficiency of development
and debugging
Memory protection enables faster
diagnosis of incorrect memory
accesses.

• Improved system reliability and
robustness
Memory protection helps prevent
bugs from crashing devices.

• Reduced development risk
Memory protection helps reduce
the possibility that latent bugs in
the shipping code, or new bugs
from add-on applications, will
adversely affect the functionality or
performance of devices.

• Improved time to market
More efficient development using
memory protection leads to faster
development cycles.

• Improved device quality
Memory protection enables safer
code, and more graceful degrada-
tion of device behavior in the face
of errors.

While there are certainly cases in
which applications need to be devel-
oped in kernel mode because of their
requirements for determinism or
high performance, there are many
cases where use of basic memory
protection and VxVMI can greatly
increase the reliability and quality
of embedded devices that use
VxWorks.

4. VxWorks Basic Memory
Protection
The basic level of MMU support bun-
dled with VxWorks primarily provides
cache-safe buffers (see Chapter 12,
“Virtual Memory Interface,” in the
VxWorks Programmer’s Guide).
Importantly, too, it provides pro-
grammatic modification of page
status, which enables developers to
implement a basic level of memory
protection.

To enable the bundled, basic MMU
support in VxWorks, define the con-
figuration macro
INCLUDE_MMU_BASIC. See figure 1.

The ability to modify page status
dynamically enables developers to:
• Protect private memory
• Protect shared memory
• Detect buffer overruns and under-

runs

Each of these benefits will be dis-
cussed below. For a summary of
basic MMU routines, see vmBaseLib
in the VxWorks OS Libraries API
Reference.

Protecting private data
There are many instances when
tasks need to protect data from
being modified by other tasks. With-
out memory protection, such data
would be stored in a global area
where any task could read or over-
write the data, causing potentially
undesirable side effects that may be
difficult to diagnose and debug.

To enable basic MMU support:

• In TORNADO,® the project must be a “bootable application”
1. Go to the VxWorks view in the project’s Workspace window
2. Navigate the component tree:

[Project name]>hardware>memory>MMU>MMU Mode>basic MMU support
3. Right-click on basic MMU support and select Include basic MMU support

• To define the macro manually in the configuration header files, define
INCLUDE_MMU_BASIC in config.h

Figure 1

To enable full MMU support:

• In TORNADO, the project must be a “bootable application”
4. Go to the VxWorks view in the project’s Workspace window
5. Navigate the component tree:

[Project name]>hardware>memory>MMU>MMU Mode>full MMU support
6. Right-click on full MMU support and select Include full MMU support

NOTE: The TORNADO® IDE user interface will provide a warning if both basic

MMU support and full MMU support have been selected, as these are mutually
exclusive options.

• To define the macro manually in the configuration header files, define
INCLUDE_MMU_FULL in config.h

Figure 2

3

To implement protected private
memory:

• Add a routine using taskSwitch-
HookAdd()that is called with every
task switch, to dynamically change
the state of “private memory” pages
• Call the macro VM_STATE_SET()
(which calls vmBaseStateSet()
for bundled MMU support)

• Set the memory pages to
VM_STATE_VALID upon entry into
the task, to enable this task to
manipulate its “private memory”

• Set the memory pages to
VM_STATE_VALID_NOT upon
leaving the task, to protect that
memory from access by other
tasks

Tasks can thus create their own pro-
tected private memory. If any other
task attempts to access an address
within the space of that context, a
translation look-aside buffer (TLB)
exception will occur, leading to de-
tection during debugging.

Protecting shared data
Often, tasks need to share data in a
protected manner. For example, in a
producer-consumer model, one task
will produce data and store them in a
particular data structure while
consumer tasks will read the data
to accomplish certain functionality.
Protecting the data from being over-
written by unauthorized consumers
can increase the reliability of the
system.

To implement protected shared data:
• Allocate memory for the shared

data
• E.g., use valloc()

• Create a semaphore to control
access to the shared data
• E.g., use semBCreate()

• Write-protect the shared data area
• Use the macro VM_STATE_SET()

(which calls vmBaseStateSet()
for bundled MMU support) and
VM_STATE_WRITABLE_NOT

• Create an access routine that can
write to the shared memory
• Take the semaphore while tem-

porarily write-enabling the
shared memory using
VM_STATE_SET() and
VM_STATE_WRITABLE

Any task requiring only read-access
to the shared memory area can
access it directly; however, any task
requiring write-access to the shared
memory area must do so using the
access routine. Any write-access
attempted outside the access routine
will cause a TLB exception, leading
to detection during debugging.

Detecting buffer overruns/
underruns
Memory protection can be used to
help detect programming errors
related to allocated memory buffers
or to application-defined arrays.
Common programming errors
include attempting to access before
the beginning of, or beyond the end
of, a buffer or data structure and
using a data structure that grows
larger unexpectedly.

By allocating “guard” pages on
either side of a buffer or data
structure, and disabling access to
those pages, incorrect overrun or
underrun accesses to buffers or data
structures can be detected.

To implement guard pages:
• Allocate memory for the buffer or

data structure
• Increase the size requested by

two extra pages’ worth of bytes
• The buffer needs to be page

aligned
• The actual data structure begins

one page length into the allocat-
ed memory and ends one page
length before the end of the
allocated memory

• Read- and write-protect the
“guard” pages
• Disable access to the first and

last pages of the allocated
memory using the macro
VM_STATE_SET() (which calls
vmBaseStateSet() for bundled
MMU support) and
VM_STATE_VALID_NOT

5. VxWorks Memory Protection using
VxVMI
The OS Extension VxVMI provides
basic memory protection features, as
well as a programmatic interface to
the MMU. The memory protection
features are described below, and
section 6 describes some best prac-
tices that make use of the MMU APIs.

To enable VxVMI and memory pro-
tection, make sure that VxVMI has
been installed. Then define the con-
figuration macro INCLUDE_MMU_FULL.
All VxVMI routines are then available
for use in applications. See figure 2.

For a summary of VxVMI routines,
see vmLib in the VxWorks OS Libraries
API Reference. Also see Chapter 12,
“Virtual Memory Interface,” in the
VxWorks Programmer’s Guide.

4

To protect text segments:

• In TORNADO, the project must be a “bootable application”
1. Go to the VxWorks view in the project’s Workspace window
2. Navigate the component tree:

[Project name]>hardware>memory>MMU>write-protect program text
3. Right-click on write-protect program text and select Include write-protect program text

• To define the macro manually in the configuration header files, define
INCLUDE_PROTECT_TEXT in config.h

Figure 3

To protect the interrupt vector table:

• In TORNADO, the project must be a “bootable application”
1. Go to the VxWorks view in the project’s Workspace window
2. Navigate the component tree:

[Project name]>hardware>memory>MMU>write-protect program text

3. Right-click on write-protect vector table and select Include write-protect vector table

• To define the macro manually in the configuration header files, define
INCLUDE_PROTECT_VEC_TABLE in config.h

Figure 4

Protecting program code
VxVMI can protect program code
from unintentional overwriting — a
common hazard when applications
run in kernel mode and bugs cause
pointers to reference incorrect
memory locations. To enable
program code (text segment) protec-
tion, simply define the configuration
macro INCLUDE_PROTECT_TEXT.
No additional code is necessary to
benefit from VxVMI text segment
protection (see figure 3). When the
rebuilt image is downloaded to the
target, all text segment pages will
automatically be write-protected in
memory. Additionally, the text seg-
ments of any object modules that are
subsequently loaded using ld() will
also automatically be marked as
read-only. When object modules are
loaded, memory to be write-protect-
ed is allocated in page-size
increments. Any attempt to write to a
memory location that is write-pro-
tected will cause a TLB exception.

Protecting the interrupt vector table
VxVMI can protect the interrupt
vector table from unintentional over-
writing — another common hazard
when applications run in kernel mode
and null pointer errors occur while
writing to memory. To enable inter-
rupt vector table protection, simply
define the configuration macro
INCLUDE_PROTECT_VEC_TABLE.
No additional code is necessary to
benefit from VxVMI interrupt vector
table protection (see figure 4).

Interrupt vector table protection sets
the table to be nonwritable. Any
attribute changes to the table
required by the kernel are made
automatically; however, if the appli-
cation needs to modify the interrupt
vector table, it can use the routine
intConnect(), which write-enables
the interrupt vector table for the
duration of the call.

6. VxWorks Memory Protection using
VxVMI: Advanced Best Practices
Protecting text segments and the
interrupt vector table are the basic,
automatic benefits of using VxVMI. In
addition, VxVMI provides an API that
allows developers to manipulate the
MMU programmatically using low-

level routines. Using these routines,
developers can make data private to
a task or to a code segment. And as
with the basic level of MMU support
bundled with VxWorks, developers
can also use VxVMI routines to make
portions of memory non-cacheable or
can write-protect portions of memory.

Protecting private data
As described earlier, private data can
be protected using the MMU support
bundled with VxWorks. An alternative
implementation can be achieved
using VxVMI, as described below.

To implement protected private
memory using VxVMI:
• For each task that requires protect-

ed private memory, create a private
virtual memory (VM) context using
vmContextCreate()
• Disable access to the correspon-

ding addresses in global virtual
memory using the macro
VM_STATE_SET() (which calls
vmStateSet() if VxVMI is
installed and full MMU support is
enabled) and
VM_STATE_VALID_NOT to ensure
that these pages are inaccessible

from the default global virtual
memory map

• Add a routine using taskSwitch-
HookAdd()that is called with every
task switch
• This routine should swap virtual

memory contexts, saving any
prior private context and instal-
ling any new private context

Tasks with their own protected
private memory will allocate and use
memory from this context. If any
other task attempts to access an
address within the space of that
context, a TLB exception will occur,
leading to detection during
debugging.

The advantage of protecting private
data using VxVMI is that it will often
be faster to switch a VM context
rather than to dynamically change
the state of a number of private data
pages upon task switching (the
bundled support technique).

For more details on programming
protected private memory, see
“Example 12-1: Private Virtual Mem-
ory Contexts” in Chapter 12, “Virtual
Memory Interface," of the VxWorks
Programmer’s Guide.

VxVMI® Availability

Motorola® 68K 68000, 68030, 68040, 68060 MC68030, MC68040, MC68LC040, MC68060,

MC68302, MC68EN302
Motorola PowerPC™ Motorola MPC8xx MPC823, MPC823e,

MPC850, MPC850DSL, MPC850SAR, MPC855T,
MPC857T,
MPC860, MPC860DP, MPC860P,
MPC860SAR, MPC860T,
MPC862DT/DP/P/SR/T

ARM® ARM7™ ARM7TDMI®,
ARM720, ARM720T™,
ARM740, ARM740T™

ARM9 ARM920T™, ARM940T™, ARM966E-S™

ARM10 ARM10
Intel® StrongARM® StrongARM and SA-110®, SA-1110®, IXP1200, 80200
and XScale™ XScale
Hitachi SH SH3 (Big and SH7729, SH7709A, SH7727

Little Endian) / DSP
SH4 (Big and Little SH7750, SH7751
Endian) / FPU

Intel Architecture i486® and Pentium® i486, Pentium, Pentium with MMX™

Pentium II Pentium Pro, Celeron®, Pentium II, Pentium II Xeon™

Pentium III Pentium III, Pentium III Xeon
Pentium 4 Pentium 4

Figure 6

Architecture Family Processor(s)

7. Getting VxVMI
VxVMI is an OS Extension for
VxWorks or the VxWorks®

DEVELOPER TOOL KIT (VDT). The
product description and data sheet
for VxVMI are available on the Wind
River Website:
http://www.windriver.com/products/
vxvmi/index.html.

VxVMI availability
VxVMI is currently available on the
architecture families and processors
in figure 6.

In addition, WIND RIVER® Service
Teams have ported VxVMI to several
other Motorola PowerPC processors,
including MPC603, MPC604, MPC750,
and MPC8260. WIND RIVER Service
Teams would be able to provide these
ports or to discuss porting VxVMI to a
currently unsupported processor.

To enable virtual context display:

• In TORNADO, the project must be a “bootable application”
1. Go to the VxWorks view in the project’s Workspace window
2. Navigate the component tree:

[Project name]>development tool components>show routines>MMU show routine
3. Right-click on write-protect program text and select Include write-protect program text

• To define the macro manually in the configuration header files, define
INCLUDE_MMU_FULL and INCLUDE_SHOW_ROUTINES in config.h

Figure 5

5

Protecting shared data
As described earlier, shared data can
be protected using bundled MMU
support. VxVMI also enables develop-
ers to protect shared memory, and
the implementation thereof is essen-
tially the same as when using the
basic MMU support.

For more details on programming
protected shared data using VxVMI,
see “Example 12-2: Nonwritable
Memory” in Chapter 12, “Virtual
Memory Interface” of the VxWorks
Programmer’s Guide.

Detecting buffer overruns/
underruns
Also as described earlier, buffer
overruns and underruns can be
detected using the bundled MMU
support APIs. VxVMI can also be
used to detect these errors, again
using the same technique as for the
bun-dled case detailed earlier. By
using the macro VM_STATE_SET(),
the system will automatically call the
proper state-setting routine, vmBase-
StateSet()or vmStateSet(), based
on whether the bundled MMU
support or full MMU support with
VxVMI is available.

Examining virtual memory contexts
A virtual memory context can be
examined in the debugger that is
included with the TORNADO® or
WIND®POWER IDE toolsets. The
display appears on the standard out-
put device and provides data about
each memory block: its validity, its
ability to be written, and its ability to
be cached. This information can be
invaluable when debugging the em-
bedded system software.

To enable VxVMI virtual memory con-
text display, simply define the
configuration macros
INCLUDE_MMU_FULL and
INCLUDE_SHOW_ROUTINES.
See figure 5.

Once virtual context display is
enabled, call vmContextShow()from
the shell as necessary to examine a
virtual memory context.

Wind River Worldwide Headquarters
500 Wind River Way
Alameda, CA 94501 USA
Toll free 1-800-545-WIND
Phone 1-510-748-4100
Fax 1-510-749-2010
Inquiries@windriver.com
Nasdaq: WIND

For additional contact information,
please see our Web site at www.windriver.com.

Wind River Systems and the Wind River Systems logo are
trademarks of Wind River Systems, Inc. and Wind River,
VxWorks, Tornado and Wind are registered trademarks
of Wind River Systems, Inc. All other names mentioned
are trademarks, registered trademarks or service
marks of their respective companies or organizations.

For further information regarding Wind River
trademarks, please see:
www.windriver.com/company/terms/trademark.html

©2003 Wind River Systems, Inc. MCL-WP-VXW-0311

6

8. Summary
VxWorks is a kernel mode address-
ing real-time operating system, but
use of features bundled with the
operating system or provided by the
OS Extension VxVMI affords
developers important basic memory
protection features. These features,
including write-protection of text
segments and of the interrupt vector
table, can prevent errant or poorly
designed applications from having
harmful or disastrous effects on the
embedded system. In addition, devel-
opers can detect buffer overruns and
underruns, protect private data from
corruption, and provide secure
shared data.

Use of basic MMU support and
VxVMI can help developers using
VxWorks for embedded system soft-
ware to improve the efficiency and
productivity of the debugging phases
of development, reducing both devel-
opment risk and time to market, and
to improve system reliability and
robustness, improving overall device
quality.

