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ABSTRACT  
Usage of a GALS approach for a SoC implies the creation of several 
asynchronous paths. These paths can be critical for the system as 
some of them are part of the system bus. They require special 
attention during verification. 
 
RTL simulations are not able to model either CDC issues or their 
effects. Gate level simulations are delay aware and could fill the gap. 
But they can only be performed late in the projects life, which makes 
this solution inappropriate. 
 
This paper presents the verification methodology developed to 
address this topic early, during IP RTL simulations. This 
methodology responds to the following constraints: no design 
instrumentation, coverage-driven verification compliancy and easy 
reuse. The final section presents some interesting results achieved by 
applying the methodology to real multi-clock IPs. 
 

Categories and Subject Descriptors  
B.6.3 [Logic Design]: Design Aids, Verification 
 

General Terms  
Verification.  
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1. INTRODUCTION  
Digital baseband SoCs developed for 3G multimedia phones 
integrate more and more features. As the target clock frequency is 
drastically increasing, it’s getting unviable to keep a fully balanced 
clock tree for all the SoC. Consequently a GALS approach is used. 
The outcome is that many CDC paths are present at the boundary of 
each synchronous domain. These CDC paths are used intensively as 
they are supporting huge data transfers inside the SoC. Hence, 
special care must be paid in the verification of these paths. 
 
A flip-flop which is the end point of a clock domain crossing (CDC) 
path is subject to timing violation due to asynchronism of the clocks. 
The flip-flop can enter in a metastable state which is dangerous for 
the rest of the chip. We present in Section 2 this phenomenon and the 
way to minimize the probability of its propagation. 
 
Structures used to reduce propagation of metastability can’t avoid the 
effects of this phenomenon. Data can be corrupted and the design 
must be resistant. Simulations can’t properly model these effects. We 

will present the limitations of the simulators in Section 3 and the 
model we propose to fill the gap in Section 4. 
 
A methodology has been defined to benefit from this model. This 
methodology will be detailed in Section 5. In Section 6, we will 
present the results we could obtain with it. 
 
2. ASYNCHRONOUS DESIGN ISSUES 
In order to observe a deterministic behavior at the output of a flip-
flop, its data input must remain stable during the setup and hold time. 
 

 
Figure 1 – Timing constraint for D pin of flip-flops 

 
When these timings are not respected (i.e. a transition on D occurs 
too close to CK edge), the behavior of the flip-flop output is 
unpredictable: the output can stabilize either to 0 or 1. In some cases, 
the output can also become metastable, which means oscillating at a 
level between 0 and 1. This oscillation should diverge and finally 
settle to 0 or 1 randomly after a resolution time. 
 
In asynchronous designs, there is no way to guarantee setup and hold 
time for first flip-flops in the receiving clock domain. So 
metastability and data corruptions will occur for that reason. The 
design must be resistant to those issues. 
 
Some structures exist to reduce metastability propagation probability, 
in particular the n flip-flop synchronizer, presented in figure 2. 
 

 
Figure 2 – n flip-flop synchronizer 
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Design constraints determine the number n of FFB flip-flops to 
instantiate.  
 
This structure reduces the probability for metastability to be 
propagated on Dout but doesn’t ensure data correctness. This 
becomes an issue when several resynchronized signals reconverge in 
the receiving clock domain. 

 

 
Figure 3 – Reconvergence in receiving clock domain 

 
 
If In1 and In2 both violate setup/hold window on D1 and D2, data 
may become incoherent between Q1 and Q2 during the following 
receiving clock cycle, as shown in figure 4. 
 

 
Figure 4 – Data incoherency in receiving clock domain 

 
 
If those resynchronized signals reconverge in the receiving clock 
domain, special care must be taken in the design phase to deal with 
this incoherent data. This has to be verified. 

 
3. SIMULATION MODELS LIMITATIONS 
 
3.1 RTL Simulations  
When performing RTL simulations, flip-flops are modeled as 
sequential elements with no setup/hold time information. On the 
clock rising edge, the input is copied on the output with no 
consideration of timing violation. So, there is a class of bugs related 
to metastability which cannot be detected with a traditional RTL 
model. 
 

3.2 Gate level Simulations  
Gate level simulation provides a solution to model timing violation 
issues. It uses a back-annotated netlist, provided by the physical 
implementation team. 
 
This netlist is available when back-end tasks are already very 
advanced, which means late in the project life. What is more, this 
netlist is not available independently for each IP. 
 

Another issue with gate level simulations is that the flip-flop model 
is the behavioral model which is described in the libraries. This 
model can detect a setup/hold violation but doesn’t model 
metastability effect and data corruption in a usable way. The model 
introduces an X on the output of the flip-flop for one clock cycle 
when a setup/hold violation is detected. So, to avoid X propagation, 
the timing checks are disabled. 
 
4. PROPOSED MODEL 
To address the lack of accurate simulation models, a new model of 
metastability effects and data corruption is needed. This model has to 
represent a “realistic simplification” of what occurs on silicon. Some 
requirements have to be respected. 

 
4.1 Model requirements 
The model must correspond to the following requirements: 

• Usable in RTL simulations 
• Doesn’t need design instrumentation 
• Doesn’t have significant impact on run-time 
• Easily reusable from one IP to another 
• Provide coverage on exercised data corruptions. 
 

 

4.2 Injector cell 
To cope with those requirements we have defined an injector cell, 
described in Specman’s e language. By using Specman, we’ll benefit 
from the advanced constraints solver and coverage features. We’ll 
also use the tool to monitor and force signals during the simulation, 
so there is no need to modify the DUT.  
 
An injector cell is connected around each first flip-flop of the 
receiving clock domain and will add, during RTL simulations, a 
model of timing violation for the input of the flip-flop.  
 

 
Figure 5 – Data corruption injector 

 
The injector cell monitors two pins of the flip-flop: data and clock. 
When a transition occurs on the input, close to the clock edge, the 
injector generates an event to indicate a timing violation. Length of 
setup and hold windows are dynamically configurable. 
 
When a timing violation event is generated, a random generator will 
decide to corrupt or not the data on the output of the flip-flop. This 
random generator can be constrained on several parameters 
(simulation time, current Q value, kind of violation). 
 
Each injector can report its operations in the simulator log. It can 
report detected timing violations and injected data corruptions. 
Verbosity of injectors is configurable so to choose the appropriate 
level of information depending on the maturity of the verification 
environment. 
 

In1 
CK 

In2 
Q1 

Q2 

t 

Q1 

D2 

D Q 
C 

D1 

Q2’ 

In1 

In2 

CK2 

D1’ Q1’ 

Q2 D2’ 

CK1 

FFA FFB 

D Q D Q 

CK2 

corruption_injector 
Data 

corruption is 
injected here 



Injectors are instantiated in an existing verification environment, 
using macros. It’s necessary to provide the path to the pins of the 
flip-flops on which we want to model effects of timing violations. 
 
Once instantiated, injectors will then behave in a random way. 
 
Having injectors instantiated in the verification environment allows 
to model effect of timing violations on CDC paths. As we want to 
use these injectors in coverage driven verification environments, we 
need to collect coverage data. 

 
4.3 Coverage Model 
 
4.3.1 Signal level coverage  
A first level of coverage is provided by each injector cell. It is a 
signal level coverage. It shows which kind of violations occurred for 
the related flip-flop and reports the data corruptions which were 
inserted. It also crosses data. 
 
Signal level coverage gives a good overview of global corruption 
injection. If all corruption injectors are enabled, there will be a list of 
coverage groups, each one related to an instrumented flip-flop. 
 
This can highlight some holes, related to flip-flops on which timing 
violations never occur. It can mean that testcases or relative clock 
phases are not able to activate the corruption injectors. 
 
Once signal level coverage reaches the targeted value, it is important 
to focus on a higher level coverage, especially the reconvergence 
coverage. 
 
4.3.2 Reconvergence coverage 
As highlighted in section 2, when several signals are resynchronized 
into the receiving clock domain, there can be a loss of data 
coherency between these signals. This can give an issue if those 
signals are reconverging in the receiving clock domain.  
 
The design has to be robust enough to handle these data 
incoherencies and its own behavior has to be verified. The purpose of 
the reconvergence coverage is to ensure that all possible data 
incoherencies combinations have been generated by the injectors. 
 
A bus level monitor allows to collect events and data. It collects 
events and data coming from several corruption injectors. Here is its 
instantiation: 
 

 
 

Figure 6 – Bus monitor cell instantiation 
 
Each time a corruption is performed by an injector, an event is 
emitted. This event is received by the corruption bus monitor. The 
bus monitor then collects values from the injectors and defines which 
was the simulated value and which value has been forced. 
 

These values are used to perform a cross coverage between simulated 
and forced values. 
 
This monitor provides several crossed items, ensuring all possible 
data incoherencies are simulated. It is then the task of the scoreboard 
to perform data checking. 

 
5. VERIFICATION FLOW  
Usage of injector cells allow to model CDC issues in RTL 
simulations. These injectors have to be added in an existing 
verification environment. And it is mandatory to instantiate them on 
all first flip-flops of the receiving clock domains.  
To ensure efficient usage of these injectors, a methodology has been 
defined. 
 
As injectors must be plugged in an existing verification environment, 
the methodology can be composed of two main phases: 

• Phase 1:  Building of a standard coverage driven 
verification environment for a multi-clock IP. 

• Phase 2: Usage of the injectors in the verification 
environment built in phase 1.  

 
Here is a detailed description of those phases. 
 

5.1 Phase 1 
Typical functional verification applies to multi-clock IPs. This first 
phase consists in the building of the verification environment. It must 
respect the coverage driven verification methodology and pay special 
care to the clock generation. 
  
Clocks must be generated according to clock scenarios, defining 
clock frequencies at which the IP will have to work. These scenarios 
must appear in verification plan of phase 1. 
 
The coverage of phase 1 needs the full functional coverage of the IP, 
which has to be crossed with the clock scenarios coverage. Here is a 
summary of phase 1 steps. 
 

 
Figure 7 – Phase 1 steps 

 
This figure shows typical verification steps on the left. Steps are 
added on the right to deal with multi-clock aspects.  
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This first phase is qualified with a coverage which is a cross of the IP 
functional coverage and the clock scenarios coverage. 
 
Once the coverage has reached the targeted value, it is time to switch 
to phase 2, to address CDC issues. 
 

5.2 Phase 2 
In this phase, we can investigate specific CDC issues, thanks to the 
injectors. There must be one injector instantiated for each flip-flop 
subject to metastability, i.e. each first flip-flop of a receiving clock 
domain.  
 
Phase 2 is divided in 3 steps: recognition, instrumentation and 
corruption. Here is a schematic view of phase 2: 

 
 

Figure 8 – Phase 2 steps 
 
5.2.1 Recognition 
Injectors have to be connected on each flip-flop subject to 
metastability. Recognition step consists in identifying all 
synchronization elements of the DUT.   
 
This recognition must be as automated as possible. For that, we rely 
on structural checking tool, in our case Spyglass from Atrenta. 
Spyglass contains some CDC check rules which can provide the list 
of CDC path endpoints. 
 

• clock_sync02 which reports the recognized 
synchronization structures. 

• clock_sync01 which reports unrecognized synchronization 
structures. As we want to model effect of timing violations 
on all flip-flops which are subject to it, we need to consider 
this list. 

 
From these reports, it’s possible to build the list of pins on which the 
injectors must be connected.  

 
The methodology directly relies on the correctness of this list. So, 
special care must be given to the setup of Spyglass and to the 
filtering of its reports. 
 
Reconvergence coverage requires the lists of resynchronized signals 
which reconverge in the receiving clock domain. For this task, we 
also use Spyglass. Several CDC check rules are necessary to build 
the list of reconverging signals: 
 

∙ Clock_sync03b provides reconvergence of signals coming 
from different clock domains. 

∙ Ac_conv01 and Ac_conv02 provide reconvergence of 
signals coming from the same clock domain. 

 
5.2.2 Instrumentation 
This step consists in the instantiation of the injectors and of the bus 
monitors.  
 
Injectors are instantiated by loading an e-configuration file. This file 
contains the configuration of each injector. This configuration is 
done thanks to macros and is directly given by the list of 
synchronization elements provided by the recognition step. 
 
Bus monitors will collect information from several injectors, in order 
to build reconvergence coverage. The instantiation of these monitors 
is also done in an e-configuration file. It consists in defining the list 
of injectors a bus monitor is connected to. This list is provided by the 
recognition step. 
 
The writing of the e-configuration files is done thanks to a script, 
using the outputs of the recognition step.  
 
5.2.3 Corruption 
This step consists in running the regression built in phase 1, with the 
injectors activated. 
 
Running the regression with the injectors might trigger some new 
bugs. To help debug, it is then possible to constrain the injectors so 
to deactivate some of them or activate them in restricted conditions. 
 
Phase 2 ends when the targeted coverage is reached. Some loops 
might be required with design teams when targeted reconvergence 
coverage is not reachable. It can occur when some reconverging 
signals have mutually exclusive states or transitions. Those 
transitions must be removed from the reconvergence coverage. 
 

5.3 Verification qualification 
The quality of the verification is measured thanks to the full 
coverage. This coverage is given by the sum of coverage of phase 1 
and the coverage of phase 2. 

 
Figure 9 – Full coverage definition 
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6. RESULTS 
The methodology is being deployed on several asynchronous IPs. 
First application was done on asynchronous protocol bridges, as 
these IPs are inserted on critical data paths of the SOC. It is now 
used for clock generator and power management IPs. 
 
The methodology allowed finding several bugs due to CDC issues. 
In particular, it was applied to an IP, in which one bug was found 
during gate level simulations. Thanks to the injectors the bug could 
be reproduced during the first RTL simulation. 
 
Some coverage is provided automatically by the package and can be 
used for the qualification of the verification environment. As 
transitions on the inputs can be mutually exclusive, in some case 
manual refining is needed for the reconvergence coverage goals. 
 
The simulation run-time overhead has been computed on an 
asynchronous AXI-AXI bridge verification environment. The 
comparison is done, running the same test with the same seed on the 
environment of phase 1 and the environment of phase 2. The 
overhead is 37%. 
 
The flexibility of the solution allows deploying it on larger IPs, such 
as system buses or in the future on NoCs. It is also possible to benefit 
of the corruption injectors during gate level simulations. This way, 
the behavioral model of the flip-flops could be overridden to model 
metastability effects. 

 
7. CONCLUSIONS 
GALS approach for new 3G baseband SoCs adds a lot of 
asynchronous paths. Some of those paths are extensively used as 
they are part of the system buses.  
 
Special care must be given to the verification of those asynchronous 
paths. But sequential elements receiving data from an asynchronous 
clock domain are subject to timing violations on their input. As RTL 
simulations are not able to model the effect of those timing violation, 
some bugs due to CDC issues are not detectable. 
 
The methodology presented here provides a solution to model CDC 
issues in RTL simulations. This way, it allows discovering bugs 
related to metastability effects, early in the project life. 
 
The solution is compatible with a coverage driven verification 
methodology and can be added to an existing verification 
environment. It doesn’t require DUT instrumentation nor 
recompilation. 
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