基于OpenCL的图像积分图算法优化研究
摘要:
图像积分图算法在快速特征检测中有着广泛的应用,通过GPU对其进行性能加速有着重要的现实意义。然而由于GPU硬件架构的复杂性和不同硬件体系架构间的差异性,完成图像积分图算法在GPU上的优化,进而实现不同GPU平台间的性能移植是一件非常困难的工作。在分析不同CPU平台底层硬件架构的基础上,从片外访存带宽利用率、计算资源利用率和数据本地化等多个角度考察了不同优化方法在不同GPU硬件平台上对性能的影响。并在此基础上实现了基于OpenCL的图像积分图算法。实验结果表明,优化后的算法在AMD和NVIDIA CPU上分别取得了11.26和12.38倍的性能加速,优化后的GPU kernel比NVIDIA NPP库中的相应函数也分别取得了55.01%和65.17%的性能提升。验证了提出的优化方法的有效性和性能可移植性。
下载地址